
Improving Fidelity in Video Streaming Experimentation on
Testbeds with a CDN

Calvin Ardi
USC/ISI

calvin@isi.edu

Alefiya Hussain
USC/ISI

hussain@isi.edu

Michael Collins
USC/ISI

mcollins@isi.edu

Stephen Schwab
USC/ISI

schwab@isi.edu

ABSTRACT
Video streaming is the leading network traffic on the Internet, yet
there are few tools to run high fidelity experiments with video
streaming traffic on network emulation-based testbeds. In this pa-
per, we present a framework to enable higher fidelity and principled
experimentation with 36 different video streaming traffic scenario
combinations that can be configured and deployed on a notional
CDN and data metrics infrastructure. This framework can be used
to further study and experiment with adaptive bitrate algorithms
and other AI/ML solutions for video delivery.
ACM Reference Format:
Calvin Ardi, Alefiya Hussain, Michael Collins, and Stephen Schwab. 2022.
Improving Fidelity in Video Streaming Experimentation on Testbeds with
a CDN. In Workshop on Design, Deployment, and Evaluation of Network-
assisted Video Streaming (ViSNext ’22), December 9, 2022, Roma, Italy. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3565476.3569097

1 INTRODUCTION
Video streaming is one of the top network traffic applications on
the Internet [19], however, there are limited tools to model rep-
resentative video streaming traffic for systematic and disciplined
experimentation. Prior work in traffic generation and simulation
typically focus real-world deployments [1, 2, 25] and algorithm
development and stress testing [13] or on simulating the behavior
of the underlying protocols [3, 5, 21, 26].

Networking and cyber security researchers need video streaming
traffic generation tools in representative environments in order to
develop and evaluate the next generation of systems, including
those for AI/ML network traffic classification and quality of service
management. These tools allow experimenters to test and evaluate
their solutions during development, and include reconfigurable
client and server components.

Today, experimenters iterate on and test their video streaming
software and algorithm components on the Internet, simulators/em-
ulators, or “one-off” on their development workstations. These en-
vironments presents a challenge for fidelity in experimentation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ViSNext ’22, December 9, 2022, Roma, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9936-4/22/12. . . $15.00
https://doi.org/10.1145/3565476.3569097

There is a trade-off between fidelity and reproducibility, and at an-
other level, ease of reproducibility. Running or deploying services
on the Internet gives you the highest fidelity, but the resource and
monetary costs are prohibitively high for almost everyone except
large commercial entities. Similarly, network simulators are fast
and easy ways to simulate network traffic conditions, but are often
focused on simulating the underlying protocols (TCP, UDP) rather
than application traffic.

In order to create representative video traffic on-the-wire for
experimentation on testbeds, we combine and use various com-
ponents of a video streaming architecture to emulate real users
watching actual videos on a modern Internet. In § 2, we present
a notional DNS-based content distribution network that can be
configured for the experiments. While preliminary at this stage,
this model enables reproducible video streaming experiments at
a higher fidelity with edge caches at multiple points-of-presence
(PoPs) in the emulated network.

The benefit of experimentation on testbeds is reproducibility and
repeatability of actual network traffic and behavior in a controlled
environment. While the clients, servers, middleboxes, and network
topologies are emulated on VMs or bare-metal, the traffic on the
wire is real.

Our contributions are to: (1) build and support a Content De-
livery Network (CDN) on an emulation-based networking testbed
for video streaming, (2) extend existing reproducible video traffic
generators to use a CDN, and (3) instrument clients and servers to
support collecting Quality of Experience (QoE) metrics and build
a data collection architecture to support live and offline analysis
of QoE data. We describe the architecture and methodology of
our video streaming experimentation framework in § 2. In § 3, we
demonstrate our CDN and video streaming traffic generators. We
cover related work in § 4, discuss future work and conclude in § 5.
To further enable research in this domain, we make our network
traffic generators, experimentation framework, and tools freely
available at https://mergetb.org/projects/searchlight/.

2 A FRAMEWORK FOR VIDEO STREAMING
EXPERIMENTATION

Our framework of video streaming experimentation on network
emulation-based testbeds at a higher fidelity consists of three com-
ponents: a simplified CDN (§ 2.1), video streaming traffic gener-
ators (§ 2.2), and instrumentation and architecture for analyzing
QoE metrics (§ 2.3). We discuss implementation details in § 2.4.

https://orcid.org/0000-0001-6994-9538
https://orcid.org/0000-0002-4944-8338
https://orcid.org/0000-0001-8300-7571
https://orcid.org/0000-0002-4305-9454
https://doi.org/10.1145/3565476.3569097
https://doi.org/10.1145/3565476.3569097
https://mergetb.org/projects/searchlight/

ViSNext ’22, December 9, 2022, Roma, Italy Calvin Ardi, Alefiya Hussain, Michael Collins, and Stephen Schwab

Table 1: Comparing Our Testbed vs. an Internet CDN Features

System Our Testbed CDN An Internet CDN

Traffic steering Single-level DNS Multi-level DNS, anycast routing
Content management “Static” (already synchronized and replicated), pre-

computed audio/video chunks
Dynamic (cache priming and miss strategies), complex replica-
tion strategies (resource, geographical constraints) on-the-fly au-
dio/video encoding

Infrastructure
monitoring

Throughput, QoE, QoS metrics (control plane) Accounting, availability, network and application performance
(including QoE, QoS)

client A ? 10.1.1.1

dnsmasq
127.0.0.1:53

example.com A?

cdn.isi.corp A?

authoritative DNS server
isi.corp

ns0.isi.corp

cdn.isi.corp A?
cdn.isi.corp A 10.1.2.1

upstream DNS resolverexample.com A?
example.com A w.x.y.z

client B ? 10.5.5.5

dnsmasq
127.0.0.1:53

cdn.isi.corp A?

cdn.isi.corp A?
cdn.isi.corp A 10.5.2.1

Figure 1: Client-side Split DNS Configuration

2.1 Improving Network Experimentation
Fidelity with a CDN

We take a step forward in improving the experimentation fidelity
of video streaming experiments by implementing and providing a
usable CDN within a testbed.

Today’s Internet is both much more complex and consolidated:
most traffic today is being delivered to Internet users from Hyper-
giants [10, 14], a small set of content providers and CDNs. In the
past, a client connecting to a website would be a simple point-to-
point client-server connection: today, the top websites, on average,
loaded roughly 96 different URLs from 16.5 different domains [18],
many of which resolve to the same CDN.

Our goal is to build a working and easily extensible CDN for ex-
perimentation on testbeds. ACDN system consists ofmany complex
subsystems [17], and because the often proprietary technology is
constantly evolving, we focus our efforts onwhat the end-user client
would “see” on the network when interacting with a CDN rather
than an actual Internet CDN. Table 1 summarizes, at a high-level,
some of the distinctive features between our CDN implementation
and an Internet CDN.

From the perspective of the end-user, a CDN roughly consists
of two major systems: (1) traffic steering using DNS or anycast
routing and (2) a set of edge caches located as close as possible to
the end-user client.

To steer traffic to a particular edge cache, we deploy authorita-
tive DNS with a number of answering strategies that are available
to experimenters. Figure 1 shows a typical client configuration: a
client has a local forwarding resolver that forwards all requests in a
particular domain to an authoritative Domain Name System (DNS)
server (all other domains are sent to an upstream resolver). In re-
sponse to a client’s query, this authoritative can be configured to
return a record that matches the closest edge cache server using
IP geolocation, or “random” records. While returning the closest

server is typically the optimal behavior, our ability to return ar-
bitrary records is useful for validating testbed experiments and
experimenting with network capabilities. For example, the experi-
menter or the testbed platform can validate or spot-check that an
experiment is working and performing as specified (correctness
in DNS, network reachability, etc.) before running experiments
and taking measurements. Similarly, we configure how records are
returned to experiment with fault tolerance and network service
failures (Internet outages, cyberattacks, overloading) or capabilities
(load balancing, measuring availability and performance).

In addition to arbitrary records, we can configure wildcard DNS
to always return random and valid answers. Using wildcard DNS
enables us to control both the effects of DNS caching and number
of lookups required.

We focus on content delivery from an edge to the end-user client,
resulting in a “static”-like CDN. A typical CDN on the Internet gen-
erally pulls or gets pushed content from one or more origin servers.
We instead deploy a set of already replicated edge caches: from
the end-user’s perspective, this represents the typical browsing
or viewing experience as the initial added latency only affects the
first user. Prior work [12] and discussions with researchers at CDN
providers has found that the latency cost in the initial cache miss
is highly optimized (via priming or network pathing) or greatly
amortized over time in production CDNs. To simplify our initial
implementation, we consider replication strategies and evaluating
the costs of cache priming and misses for future work.

Figure 2 shows our edge server implementation. On each edge
server, assets are served by a Caddy webserver from an already-
synchronized and consistent backing store (i.e., the origin server
(dotted boxes) has already pushed content to all caches (dotted
lines)). We also provide a live watermarking image proxy to help
with caching (or cache busting) and visually validating that the
CDN is working as intended.

2.2 Extending and Using Reproducible Video
Streaming Traffic Generators

We next extend a video streaming traffic generator to use our CDN
and instrument the generators with QoE metrics collection.

Video streaming traffic is defined as video that is streamed on-
demand from a server to client (Netflix, YouTube, or Vimeo) as
opposed to video streamed live (Facebook Live, Twitch). In a clas-
sic video streaming deployment, one or more clients connect to
and stream a video from a remote server, which hosts both the
audio/video assets and supporting website (HTML, JavaScript). To
improve realism, we add support for hosting both audio/video and

Improving Fidelity in Video Streaming Experimentation on Testbeds with a CDN ViSNext ’22, December 9, 2022, Roma, Italy

edge0.cdn.isi.corp ? assetswww.isi.corp
website

caddy server

caddy server
live watermarking
imgproxy (:8080)

images image store

file store
JavaScript

 audio/video chunks
manifests

origin server

user

manifest

edge1.cdn.isi.corp ? assets

caddy server
live watermarking
imgproxy (:8080)

images image store

file store
JavaScript

 audio/video chunks
manifests

audio/video
chunks

edgeN.cdn.isi.corp ? assets

caddy server
live watermarking
imgproxy (:8080)images image store

file store
JavaScript

 audio/video chunks
manifests

.

.

.

Figure 2: Edge Server Implementation and Client Interaction Example

Table 2: Video Streaming Configurable Settings [4]

Name Configuration Values

Resolution 576p, 720p, 1080p
Protocol:

Streaming DASH, HLS, HTML5
Transport HTTP/1.1, HTTP/1.1+TLS, HTTP/2, HTTP/3

Watching:
Behavior Simple, Random (future), Popular (future)
Time 𝑛 seconds

website assets on our CDN. To improve experimentation and eval-
uation, we add instrumentation for collecting QoE ground-truth
metrics for both live and offline analysis.

We extend and use an open-source video streaming traffic genera-
tor [4], which supports 36 combinations of multiple video streaming
(DASH, HLS, HTML5) and transport protocols (HTTP/1.1, HTTP/2,
HTTP/3) over a variety of resolutions, as shown in Table 2 (Fig-
ure 3 shows the protocol stack and how protocols build on top of
another). The client consists of the Google Chrome web browser
instrumented using JavaScript and the Playwright [16] browser au-
tomation framework to emulate a user watching video. The client
watches videos using a simple human behavior model on a website
for a pre-determined length of time. To easily enforce a configu-
ration for ground truth, the server can strictly deliver websites at
specific URL endpoints that indicate the streaming and transport
protocols used.

IP

TCP

TLS

HTTP/1.1 HTTP/2

UDP

QUIC

HTTP/3

HTML5

HLSDASH

"T
ra

ns
po

rt"
Vi

de
o

St
re

am
in

g

Figure 3: Video Streaming and “Transport” Protocol Stack

We extend this video streaming traffic generator to incorporate
our CDN and QoE components. To use our CDN, we dynamically
generate the video website by rewriting URLs of page assets (video
manifests of audio/video chunks, JavaScript, images) to use do-
mains that resolve to an edge cache. We discussed earlier that
we can configure how the domain names of our CDN edges re-
solve to its IP addresses via IP geolocation or round-robin. De-
pending on the experimenter’s needs, clients can connect to URLs
that resolve to the closest edge cache (cdn.example.corp), or to
an arbitrary edge that is likely to be distant “geographically” (e.g.,

ViSNext ’22, December 9, 2022, Roma, Italy Calvin Ardi, Alefiya Hussain, Michael Collins, and Stephen Schwab

qkf7kjj.cdn.example.corp → nyc.cdn.example.corp). In an ex-
treme case used to demonstrate our CDN’s functionality, for exam-
ple, each asset’s URL points to a unique domain which results in a
client connecting to every edge cache in our CDN.

We also instrument the client and server to collect QoE metrics
for analyzing the overall performance and health of video streaming
delivery and playback. A defined set of QoE metrics are standard-
ized in the industry as Common Media Client Data (CMCD) [6].
CMCD includes video streaming performance data like measured
bandwidth, buffer starvation events, and requested/actual bitrates
of audio/visual segments. On the client-side, we use existing in-
strumentation on the ABR video players, which send CMCD data
as URL query parameters to the web server. We further configure
the web server to send HTTP access log entries to a lightweight
logger we developed that sits alongside Caddy. This logger parses
and sends video metrics to multiple “sinks” over the control plane,
including a remote time-series database, for further analysis.

2.3 Experiment Instrumentation and
Architecture for Live and Offline Analysis
of QoE Metrics

The final major component in our framework for video streaming
experimentation is the architecture for collecting and processing
QoE metrics.

Analyzing QoE metrics is important in experimentation as the
metrics reveal to us the actual behavior and ground truth of network
and video playback performance as the client end-user perceives it.
We do not always receive the full picture of client performance by
looking at data on the wire or packet captures—this is especially
true as network traffic and corresponding metadata moves to being
encrypted by default. Similarly, spot checking all video streaming
clients using VNC or remote desktop is both labor-intensive and
infeasible on large-scale experimentation. (While prior work has
shown that one can use AI/ML techniques [8] to build models
on network traffic data to infer playback performance, training
these models requires labor-intensive and often manual labeling of
ground truth.)

We support the instrumentation of ground truth or QoE data in
our video streaming traffic generators (discussed earlier in § 2.2) by
deploying monitoring backend infrastructure in our experiments.
We provide live visualization or situational awareness using dash-
boards and enable offline analysis by archiving data after each
experiment run.

QoE metrics are sent from our video traffic generators to a re-
mote monitoring server running the InfluxDB Time-Series Data-
base (TSDB). To avoid adding unnecessary noise to an experiment’s
network traffic, we typically send logging and metrics data over
the control plane (akin to a management VLAN). To emulate a pro-
duction environment, we could also run all monitoring traffic over
the data plane as well.

Live and offline analysis of QoE metrics helps with iterating and
validating an experiment run, and enables comparisons between
many experiments. Support for live and offline analysis is done
by connecting various frontends to the TSDB backend. For offline
analysis, we export and archive the TSDB and Hypertext Transfer
Protocol (HTTP) access log data for further processing.

To visually validate a live experiment or demonstration, we can
monitor both network throughput and QoE metrics in real-time
using web dashboards (Grafana), shown in Figure 4. For example,
if we reduce the bandwidth on a link between a client and server
during an experiment, we can visually verify that the measured
network throughput has decreased and that the video player on the
client reduces the playback bitrate and possibly experiences buffer
starvation.

2.4 Implementation and Usage
We implement each component in our framework with the goal of
maximizing experimentation flexibility and configurability. While
each of our components are designed to interoperate together, they
can also be used independently, depending on experimentation
needs (e.g., our server-side components could be used with an
independently developed mobile client).

We use and support our implementations on Merge [7], a net-
work emulation-based Linux testbed. The Merge testbed platform
enables users to deploy experiments with arbitrary network topolo-
gies and dynamically configure routing and links with arbitrary
bandwidth capacity (up to 10Gbps), delay, and loss. Merge also
provides efficient hardware resource allocation and sharing and
isolation between experiments.

All experiment nodes on the testbed are VMs that run an unmod-
ified, baseline Ubuntu 20.04 LTS operating system. The hardware
requirements will vary depending on experimental needs: we have
found that 2 to 4 CPU cores on a modern CPUwith 8GB of memory
on each node provides smooth video streaming performance while
supporting data instrumentation and collection. We have also run
video streaming experiments successfully on a Merge testbed of
resource-constrained, embedded devices [11].

We create and deploy Ansible playbooks for all stages of an
experiment (topology configuration, software provisioning, traffic
generation, data capture and archiving, topology teardown), includ-
ing repeated runs for statistical validity. These playbooks make the
experimental setup and execution portable to other environments
without requiring custom operating system images.

Our network traffic generators, experimentation framework,
and tools are freely and publicly available at https://mergetb.org/
projects/searchlight/.

3 USE CASE DEMONSTRATION
We next look at a video streaming experiment running on a testbed
to demonstrate our video streaming traffic generators using our
CDN on a testbed.

We deploy a small-scale tiered network to provide a controlled
environment that roughly approximates an enterprise network
while balancing the topology size with resource constraints. The
tiered network consists of a tree-like hierarchical topology with
traffic generating clients at the leaves (enclaves) and multiple levels
of routers above. Figure 5 shows our 19 node topology, with clients
(h*, orange) at the furthest leaves. Our CDNhas edge caches (cdn-*,
blue) deployed at the edge of each enclave, connected to a border
router (magenta). Finally, all border routers (and corresponding
enclaves) are connected in a tree-like hierarchical structure rooted
at a common router c0 (blue).

https://mergetb.org/projects/searchlight/
https://mergetb.org/projects/searchlight/

Improving Fidelity in Video Streaming Experimentation on Testbeds with a CDN ViSNext ’22, December 9, 2022, Roma, Italy

Figure 4: Live Metrics Visualization Dashboard

h0-one

h0-two

h0-three

h1-one

h1-two

h1-three

h2-one

h2-two

h2-three
cdn-0

cdn-1

cdn-2

c0

bb0

bb1

bb2

b-one

b-two

b-three

Figure 5: Tiered Topology with a CDN

Table 3: Link Capacities in Tiered Topology

Link(s) Capacity RTT
(Mbps) (ms)

All end-hosts to their border router 500 0
{b-one, cdn-0}↔ bb0 500 0
{b-two, cdn-1}↔ bb1 500 0

{b-three, cdn-2}↔ bb2 500 0
bb0↔ c0 500 20
bb1↔ c0 100 200
bb2↔ c0 50 600

We deploy the network with “geographically distant” enclaves,
representing satellite or remote offices, by adjusting the bandwidth
capacity and latency of each link. We deploy the network such
that the enclaves are “geographically distant” by adjusting the
bandwidth capacity and latency of each link. Table 3 summarizes
the bandwidth of each link. Clients and the edge cache in each
enclave are connected to one another with high bandwidth and
very low latency. In this demonstration, each enclave is connected
to the core at varying bandwidths and latencies: while enclave
one is connected at a high speed (500Mbps, 20ms), enclaves two
and three are much slower: 100Mbps/200ms and 50Mbps/600ms,
respectively. While Merge allows experimenters to dynamically and
programmatically adjust link constraints (bandwidth, delay, loss)
while an experiment is running, we initially keep them constant as
controlled variables.

To demonstrate our CDN, we run a video streaming traffic client
that accesses video on all three edge caches. While all the edge
caches are replicated in the same way, wemodify the video manifest
file to retrieve assets at specific resolutions from specific caches.
The client, running on h0-one connects to the website and plays
the video at each resolution (576p, 720p, 1080p) for approximately
30 s each (total runtime 120 s) over DASH and HTTP/2.

Figure 6 shows the connections and throughput over time as
captured on border router bb0. Each connection to a server is color-
coded and labeled for reference.We see that the initial spike (purple)
in the loading of the webpage, JavaScript, and video manifest from
cdn-0. The client then starts playback at 576p from cdn-2 (orange),
720p from cdn-1 (blue), and finally 1080p from cdn-0 (purple).
Overall, we see the expected “sawtooth”-like pattern of ABR video
streaming. We see a noticeable spike around 80 swhen switching to
1080p, as the video player takes advantage of themassive increase in
bandwidth (from 100Mbps to 500Mbps) to refill its “initial” buffer.

We have highlighted some of the capabilities of running video
streaming traffic experiments with a CDN on a testbed. We believe
that experimenters will be able to emulate a variety of network
conditions and scenarios with CDNs to design and test new and
existing ABR algorithms.

ViSNext ’22, December 9, 2022, Roma, Italy Calvin Ardi, Alefiya Hussain, Michael Collins, and Stephen Schwab

cdn-2

576p

cdn-0

1080p

cdn-1

720p

cdn-0

website
(JS,

manifest)

Figure 6: Streaming video at multiple resolutions from three edge cache servers to one client via HTTP/2.

4 RELATEDWORK
Prior work in traffic generation has focused on simulating the
behavior of the underlying protocols [3, 21, 26]. Stohr et al. [22]
conduct a systematic approach using the Mininet network emulator
on DASH video players to find optimum configurations and to
directly compare players and algorithms. Our approach expands
the scope and fidelity of video streaming traffic in experimentation
by deploying the traffic in a variety of network conditions and
topologies with other competing network flows.

Prior work in CDNs typically focus on the architecture or mea-
surements of CDNs deployment on the Internet [1, 9, 23]. Schomp
et al. [20] describe the architecture of Akamai’s DNS system, one
of the largest DNS systems that supports their CDN. While our
notional CDN uses a simplified DNS setup, we can learn from their
design decisions to improve upon our own in the context of im-
proving fidelity for experimentation.

CDNs have also been deployed at varying levels of fidelity on
testbeds [15, 24]. CoDeeN [25] was a CDN deployed on the Planet-
Lab testbed, and acted as web proxies for PlanetLab clients to cache
and distribute content from origin sites. While CoDeeN and Planet-
Lab provided high levels of fidelity by virtue of being deployed on
the Internet, it would have been difficult to reliably reproduce and
repeat experiments using CoDeeN. Our CDN and traffic generators
provides reproducible, high fidelity experimentation in a controlled
environment for ease in repeatability.

5 FUTUREWORK AND CONCLUSION
In future work we will focus on improving the fidelity of our CDN,
and developing data collection techniques to further improve anal-
ysis. These modifications will also allow us to implement more
extensive experiments and different categories of experiments.

The DNS-based redirection implemented in our work is the most
fundamental CDN technique, and also the easiest to control. CDN
providers have developed many other techniques to optimize de-
livery, including anycast routing and Edge Side Includes (ESI). In
order to accurately emulate more recent CDN architectures, we
must implement such technologies. These approaches require more
complex coordination—anycast routing requires manipulating Bor-
der Gateway Protocol (BGP), and ESI involves configuring specific
web pages. Implementing these techniques not only improves our
ability to emulate CDNs, but also to consider how different combi-
nations of the CDN toolbox can impact systems.

Our current instrumentation is built on existing network-based
data collection tools; however, this approach is inadequate for the
complex multi-host and multi-network phenomena which make up
modern web traffic. In order to properly reconstruct and analyze
events, we need a capability which identifies all of the distinct ob-
servables of a single event at the endpoint and then correlate that
information with data from all the diverse servers and networks
comprising the experiment. Accurate modern network experimen-
tation requires examining large networks and the concomitant large
volume of data, some form of summarization similar to NetFlow is
necessary to reduce the data footprint, reduce reliance on raw data
and increase analysis speed.

In this paper, we have taken the first steps towards increas-
ing fidelity in video streaming experimentation on testbeds. We
implemented the core components of a CDN, extended a video
streaming traffic generator to use the CDN, and instrumented both
the traffic generator and testbed to collect and analyze QoE met-
rics during and after experiment runs. Our network traffic genera-
tors, experimentation framework, and tools will be freely available
at https://mergetb.org/projects/searchlight/.

https://mergetb.org/projects/searchlight/

Improving Fidelity in Video Streaming Experimentation on Testbeds with a CDN ViSNext ’22, December 9, 2022, Roma, Italy

REFERENCES
[1] Giancarlo Fortino and Carlos E. Palau (Eds.). 2012. Next Generation Content

Delivery Infrastructures: Emerging Paradigms and Technologies. IGI Global.
https://doi.org/10.4018/978-1-4666-1794-0

[2] Pablo Ameigeiras, Juan J. Ramos-Munoz, Jorge Navarro-Ortiz, and J.M.
Lopez-Soler. 2012. Analysis and modelling of YouTube traffic. Transactions on
Emerging Telecommunications Technologies 23, 4 (2012), 360–377.
https://doi.org/10.1002/ett.2546
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.2546

[3] Doreid Ammar, Thomas Begin, and Isabelle Guerin-Lassous. 2011. A New Tool
for Generating Realistic Internet Traffic in NS-3. In Proceedings of the 4th
International ICST Conference on Simulation Tools and Techniques (Barcelona,
Spain) (SIMUTools ’11). ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), Brussels, BEL, 81–83.

[4] Calvin Ardi, Alefiya Hussain, and Stephen Schwab. 2021. Building Reproducible
Video Streaming Traffic Generators. In Cyber Security Experimentation and Test
Workshop (Virtual, CA, USA) (CSET ’21). Association for Computing Machinery,
New York, NY, USA, 91–95. https://doi.org/10.1145/3474718.3474721

[5] Sachin Ashok, Sai Surya Duvvuri, Nagarajan Natarajan, Venkata N.
Padmanabhan, Sundararajan Sellamanickam, and Johannes Gehrke. 2020. iBox:
Internet in a Box. In Proceedings of the 19th ACM Workshop on Hot Topics in
Networks (Virtual Event, USA) (HotNets ’20). Association for Computing
Machinery, New York, NY, USA, 23–29. https://doi.org/10.1145/3422604.3425935

[6] Consumer Technology Association. 2020. Web Application Video Ecosystem -
Common Media Client Data. CTA-5004. https:
//cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf

[7] MergeTB Authors. 2022. The Merge Testbed Platform. https://mergetb.org
[8] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata

Teixeira, and Nick Feamster. 2019. Inferring Streaming Video Quality from
Encrypted Traffic: Practical Models and Deployment Experience. Proc. ACM
Meas. Anal. Comput. Syst. 3, 3, Article 56 (Dec. 2019), 25 pages.
https://doi.org/10.1145/3366704

[9] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Proceedings of
the 2015 Internet Measurement Conference (Tokyo, Japan) (IMC ’15). Association
for Computing Machinery, New York, NY, USA, 531–537.
https://doi.org/10.1145/2815675.2815717

[10] Petros Gigis, Matt Calder, Lefteris Manassakis, George Nomikos, Vasileios
Kotronis, Xenofontas Dimitropoulos, Ethan Katz-Bassett, and Georgios
Smaragdakis. 2021. Seven Years in the Life of Hypergiants’ off-Nets. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA)
(SIGCOMM ’21). Association for Computing Machinery, New York, NY, USA,
516–533. https://doi.org/10.1145/3452296.3472928

[11] Ryan Goodfellow, Stephen Schwab, Erik Kline, Lincoln Thurlow, and Geoff
Lawler. 2019. The DComp Testbed. In 12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 19). USENIX Association, Santa Clara, CA.
https://www.usenix.org/conference/cset19/presentation/goodfellow

[12] Thomas Koch, Ke Li, Calvin Ardi, Ethan Katz-Bassett, Matt Calder, and John
Heidemann. 2021. Anycast In Context: A Tale of Two Systems. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIGCOMM ’21).
Association for Computing Machinery, New York, NY, USA, 398–417.
https://doi.org/10.1145/3452296.3472891

[13] ESnet / Lawrence Berkeley National Laboratory. 2020. iperf3 v3.9.
https://software.es.net/iperf/

[14] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and
Farnam Jahanian. 2010. Internet Inter-Domain Traffic. SIGCOMM Comput.
Commun. Rev. 40, 4 (Aug. 2010), 75–86. https://doi.org/10.1145/1851275.1851194

[15] Ge Ma and Zhen Chen. 2014. Comparative study on CCN and CDN. In 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS).
169–170. https://doi.org/10.1109/INFCOMW.2014.6849209

[16] Microsoft. 2021. Playwright v1.10.0. https://playwright.dev/
[17] Al-Mukaddim Khan Pathan and Rajkumar Buyya. 2007. A Taxonomy and

Survey of Content Delivery Networks. Technical Report, GRIDS-TR-2007-4, Grid
Computing and Distributed Systems Laboratory, The University of Melbourne,
Australia.

[18] Simran Patil and Nikita Borisov. 2019. What Can You Learn from an IP?. In
Proceedings of the Applied Networking Research Workshop (Montreal, Quebec,
Canada) (ANRW ’19). Association for Computing Machinery, New York, NY,
USA, 45–51. https://doi.org/10.1145/3340301.3341133

[19] Sandvine. 2022. 2022 Global Internet Phenomena Report. (20 Jan. 2022).
https://www.sandvine.com/phenomena

[20] Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu, Mashooq Muhaimen, and
Ramesh K. Sitaraman. 2020. Akamai DNS: Providing Authoritative Answers to
the World’s Queries. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (Virtual Event, USA)
(SIGCOMM ’20). Association for Computing Machinery, New York, NY, USA,
465–478. https://doi.org/10.1145/3387514.3405881

[21] Joel Sommers, Hyungsuk Kim, and Paul Barford. 2004. Harpoon: A Flow-Level
Traffic Generator for Router and Network Tests. SIGMETRICS Perform. Eval. Rev.
32, 1 (June 2004), 392. https://doi.org/10.1145/1012888.1005733

[22] Denny Stohr, Alexander Frömmgen, Amr Rizk, Michael Zink, Ralf Steinmetz,
and Wolfgang Effelsberg. 2017. Where Are the Sweet Spots? A Systematic
Approach to Reproducible DASH Player Comparisons. In Proceedings of the 25th
ACM International Conference on Multimedia (Mountain View, California, USA)
(MM ’17). Association for Computing Machinery, New York, NY, USA,
1113–1121. https://doi.org/10.1145/3123266.3123426

[23] Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and FabiÁn E.
Bustamante. 2009. Drafting Behind Akamai: Inferring Network Conditions
Based on CDN Redirections. IEEE/ACM Transactions on Networking 17, 6 (2009),
1752–1765. https://doi.org/10.1109/TNET.2009.2022157

[24] Miran Taha. 2016. A Novel CDN Testbed for Fast Deploying HTTP Adaptive
Video Streaming. In Proceedings of the 9th EAI International Conference on Mobile
Multimedia Communications (Xi’an, China) (MobiMedia ’16). ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering),
Brussels, BEL, 65–71. https://doi.org/10.4108/eai.18-6-2016.2264163

[25] Limin Wang, KyoungSoo Park, and Ruoming Pang. 2004. Reliability and Security
in the CoDeeN Content Distribution Network. In 2004 USENIX Annual Technical
Conference (USENIX ATC 04) (Boston, MA). USENIX Association.
https://www.usenix.org/conference/2004-usenix-annual-technical-
conference/reliability-and-security-codeen-content

[26] Michele C. Weigle, Prashanth Adurthi, Félix Hernández-Campos, Kevin Jeffay,
and F. Donelson Smith. 2006. Tmix: A Tool for Generating Realistic TCP
Application Workloads in Ns-2. SIGCOMM Comput. Commun. Rev. 36, 3 (July
2006), 65–76. https://doi.org/10.1145/1140086.1140094

https://doi.org/10.4018/978-1-4666-1794-0
https://doi.org/10.1002/ett.2546
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.2546
https://doi.org/10.1145/3474718.3474721
https://doi.org/10.1145/3422604.3425935
https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
https://mergetb.org
https://doi.org/10.1145/3366704
https://doi.org/10.1145/2815675.2815717
https://doi.org/10.1145/3452296.3472928
https://www.usenix.org/conference/cset19/presentation/goodfellow
https://doi.org/10.1145/3452296.3472891
https://software.es.net/iperf/
https://doi.org/10.1145/1851275.1851194
https://doi.org/10.1109/INFCOMW.2014.6849209
https://playwright.dev/
https://doi.org/10.1145/3340301.3341133
https://www.sandvine.com/phenomena
https://doi.org/10.1145/3387514.3405881
https://doi.org/10.1145/1012888.1005733
https://doi.org/10.1145/3123266.3123426
https://doi.org/10.1109/TNET.2009.2022157
https://doi.org/10.4108/eai.18-6-2016.2264163
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/reliability-and-security-codeen-content
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/reliability-and-security-codeen-content
https://doi.org/10.1145/1140086.1140094

	Abstract
	1 Introduction
	2 A Framework for Video Streaming Experimentation
	2.1 Improving Network Experimentation Fidelity with a cdn
	2.2 Extending and Using Reproducible Video Streaming Traffic Generators
	2.3 Experiment Instrumentation and Architecture for Live and Offline Analysis of QoE Metrics
	2.4 Implementation and Usage

	3 Use Case Demonstration
	4 Related Work
	5 Future Work and Conclusion
	References

