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ABSTRACT
Researchers are in constant need of reliable data to develop and
evaluate AI/ML methods for networks and cybersecurity. While
Internet measurements can provide realistic data, such datasets
lack ground truth about application flows. We present a ∼750GB
dataset that includes ∼2000 systematically conducted experiments
and the resulting packet captures with video streaming, video tele-
conferencing, and cloud-based document editing applications. This
curated and labeled dataset has bidirectional and encrypted traffic
with complete ground truth that can be widely used for assessments
and evaluation of AI/ML algorithms.

CCS CONCEPTS
• Networks → Application layer protocols; Network experimen-
tation; Network measurement; • Information systems → Internet
communications tools.
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1 INTRODUCTION
Artificial intelligence and machine learning (AI/ML) methods are
widely used to understand and develop networked and distributed
systems. However, datasets to train and develop such systems are
scarce and require knowing the complete ground truth to evaluate
such methods. Additionally, there are many challenges in collecting
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and curating datasets for network traffic. Each network has unique
characteristics with inherently stochastic traffic dynamics. Network
traffic can have anomalies and misbehaviors that complicate creat-
ing training data sets, and contain sensitive personally identifiable
information (PII) or intellectual property data, limiting wide access.

To help address the scarcity of publicly available networking
datasets and enable networking research, we present a network
traffic dataset that was systematically collected, curated, and la-
beled on an emulation testbed. Many researchers collect one-off
network traffic datasets, draw conclusions, subject the comparisons
to peer review, and publish results. While such paper-based datasets
allow for inference of properties and behavior, they do not sup-
port direct assessments. This dataset was collected for the DARPA
SEARCHLIGHT evaluation effort [7]. We believe that sharing this
dataset will enable repeatable and directly comparative assessments
of next generation networking technologies and applications in
cybersecurity, traffic engineering, and network measurement.

The DARPA SEARCHLIGHT dataset, while generated, as it was
collected on a emulation testbed, is a unique resource in several
ways. First, it is complete: the bidirectional traffic from all the
sources and destinations is captured. Second, it is labeled: all the
flows in the network traffic are identified and associated with an ap-
plication. Third, the traffic flows in this dataset have varying levels
of complexity. Some traffic captures have only one application flow
while some traffic captures have several simultaneous applications
and flows. Finally, the dataset contains multiple repeated samples to
account for the stochastic and dynamic nature of network traffic.
We believe that this combination of dataset features will enable a
wide range of AI/ML methods for network traffic analysis to be
systematically developed and evaluated.

The COVID-19 pandemic resulted in major shifts in Internet
traffic composition and patterns [25]. In building the dataset, we fo-
cused on using three contemporary traffic applications, video stream-
ing, video teleconferencing, and cloud-based services, over both
well-established transport protocols (TCP, UDP, HTTP) and the
recently standardized QUIC. Additionally, ascertaining information
in encrypted traffic, which has increased significantly with work-
from-home and remote work [13], is not possible in most datasets.
We include in this dataset a large collection of traces with IPsec [10]
and WireGuard [9] encryption.
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Figure 1: Network Topologies in the SEARCHLIGHT Dataset

Our contribution is the initial release of the DARPA SEARCH-
LIGHT dataset, containing combinations of 2 network topologies,
3 major contemporary applications, and 2 encryption configura-
tions. In this paper, we explain our design decisions in creating the
dataset and characterize its content. In § 2, we describe the network
topologies and software configurations used in the dataset, and
we detail the traffic generator applications in § 3. We explain in
§ 4 how we build experiment scenarios using these topologies and
applications. We describe dataset’s contents in § 5, covering the
use cases and context of our experiments in § 6. We compare in § 7
where our datasets fit in the spectrum of available datasets today
and conclude in § 8. The DARPA SEARCHLIGHT dataset is freely
and publicly accessible at https://mergetb.org/projects/searchlight/.

2 NETWORK CONFIGURATION
We design the network configurations in the DARPA SEARCH-
LIGHT dataset to provide a controlled environment that roughly ap-
proximates an enterprise network, while balancing network topol-
ogy sizes and resource constraints. We generate the dataset on a
network emulation testbed operated by the Merge testbed soft-
ware platform [3], which provides services to help users define

Table 1: Link Capacities in Heavy Dumbbell Topology

Link(s) Capacity (Mbps)

All end-hosts to their border router 30
All inter-router (border + core) links 50

Table 2: Link Capacities in Tiered Topology

Link(s) Capacity (Mbps)

All end-hosts to their border router 10
b-{one,two}↔ bb0 50

b-{three,four}↔ bb1 50
b-servers↔ c1 80
{bb0,bb1}↔ c0 80

c0↔ c1 100

and instantiate network topologies, deploy routing, and automate
experiments in an isolated and controlled environment.

Network Topologies. We deploy two different small-scale net-
work topologies (Fig. 1): heavy dumbbell, which represents a deploy-
ment of nodes in a standard client/server model; and tiered, a tree-
like hierarchical topology with traffic generating clients/servers at
the leaves and multiple levels of routers above. These topologies
were chosen because they are simple and well understood in the
networking community and are large enough to support the num-
ber of clients and servers needed to generate representative datasets
from the traffic generators we used. In comparison to the heavy
dumbbell, the composition of routers in the tiered topology leads
to interleaving of flows which results in more realistic and diverse
packet forwarding behaviors in the network.

Heavy dumbbell (Fig. 1a) consists of 17 nodes with clients on
one side and servers on the other: 10 clients connected to a border
router, 3 servers connected to a border router, and 2 intermediate
core routers that form a line with the border routers. Tiered (Fig. 1b)
has 26 nodes: 4 client enclaves, each of which contain 3 clients con-
nected to a border router (b-{one,two,three,four}), and 1 server
enclave of 5 servers connected to its border router (b-servers). The
enclaves are connected in a tree-like hierarchical structure rooted
at common router node c0.

The Merge testbed allows users to configure bandwidth capaci-
ties (up to 10Gbps), delay, and loss on network links. Table 1 and
Table 2 show the capacities used for the heavy dumbbell and tiered
topologies, respectively. We configure bandwidth capacity con-
straints to 10–100 Mbps (lower at the edges and higher at the core)
due to certain technology limitations, leaving delay as default (sub-
millisecond) and loss at 0 %. We additionally configure each link to
be symmetric, or the same capacity in either direction, to reflect the
enterprise environment of our topologies (compared to asymmetric
speeds commonly found in residential or mobile connections).

Software Configuration.All nodes run an unmodified, baseline
Ubuntu 20.04 LTS operating system. We create Ansible playbooks
to install traffic generators (§ 3), data sources, and software depen-
dencies. These playbooks make the setup portable to any other
experiment environment without requiring custom OS images.

https://mergetb.org/projects/searchlight/
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Table 3: Applications and Configurable Features

App. Configurable Settings

cbs speed := { fast (400 char/min), medium (200), slow (60) }
bursty := { true, false }
length := { 𝑛 chars }

vtc video := { true, false }
video resolution := { 576p, 720p, 1080p }

streaming := { DASH, HLS, HTML5 }
transport := { HTTP/1.1, HTTP/1.1+TLS, HTTP/2, HTTP/3 }

All nodes are deployed as QEMU/KVM [4] virtual machines (VM)
using the testbed’s built-in node creation mechanisms. The testbed
configures the VM’s network interfaces and routing tables using
systemd-networkd scripts. The testbed configures network links
using a combination of network virtualization mechanisms on the
underlying hypervisors and switches, including VLAN and VxLAN
for network segment isolation and TAP devices for VM-based access
to the network fabric.

Virtual Private Networks (VPN). With the continued growth
of VPNs in many networked systems (especially due to COVID-
19 [12]), a modern dataset should also include traffic captures where
noes communicate over a VPN. Our dataset includes two VPN
configurations: site-to-site (STS) and point-to-point (PTP). STS is
common in distributed enterprise networks and used to logically
combine physically separated networks. PTP, sometimes called
a “road warrior” configuration, is often used by roaming clients
connecting to a remote network. Each VPN is implemented using
IPsec [10] and WireGuard [9] software.

In STS, a VPN tunnel is established between each enclave at
each border router (b-clients ↔ b-servers in Fig. 1a and c0 ↔
b-servers in Fig. 1b). The tunnels in our PTP configurations are
between a single client and server: a client will tunnel all of its
traffic through the server (h0-clients → h0-servers).

In the experiments that use VPN tunnels (STS or PTP), we provide
packet captures containing encrypted traffic (captured on node c0
in Fig. 1a and c1 in Fig. 1b) as well as captures with unencapsulated
traffic (captured on a traffic generating client/server end-host).

3 APPLICATIONS
Network traffic in DARPA SEARCHLIGHT is generated by three
applications: cloud-based document editing, video teleconferencing,
and video streaming. We select these applications based on their
overall traffic share and applicability to enterprise settings. Video
streaming represented 54% of global Internet traffic in 2021 [26]
(58% in 2020 [25]). Similarly, video teleconferencing and collab-
orative document editing are essential tools in today’s business
environment. For reproducibility and control, we select and use
representative applications of popular Internet services that can be
run entirely within a testbed.

Cloud-based Document Editing (cbs). In cbs, one or more
clients simultaneously edit a shared document on a remote server
(akin to Google Docs or Microsoft Office 365). We instrument a web
browser client using the Playwright web testing and automation
framework [22] to type text in a document served by Etherpad [14].
To provide diversity in traffic patterns, we can configure text editing
by its input speed (fast: 400 characters/min, medium: 200, slow: 60),

burstiness (whether to pause randomly between words), and length
(number of total characters to input).

Video Teleconferencing (vtc). VTC is two-way traffic contain-
ing audio and video streams between two or more endpoints (Zoom,
Skype, Google Meet). We use an open-source VTC traffic genera-
tor [8] which emulates a live, multi-party audio-video conference
with two or more clients having a conversation on Jitsi Meet [1], an
open-source video conferencing software using WebRTC. During
a video conference, each client takes a turn to “speak” some dia-
log (to avoid overlapping), pre-generated using GPT-2 [23] and a
text-to-speech synthesizer, while displaying video from their “web-
cam”, a virtual camera device that is streaming pre-generated video
files. While the source video files are 1080p resolution, Jitsi Meet
will dynamically adjust the streaming quality based on network
conditions. vtc is configurable to any number of clients and each
conference can run audio-only or with audio and video.

Video Streaming (video). Video streaming is defined as video
traffic that is streamed on-demand (as opposed to live) from a server
to client (like YouTube or Vimeo). In video, one or more clients
connect to and stream a video from a remote server which hosts
both video files and supporting website code (HTML, JavaScript).
We use and extend an open-source video streaming traffic gener-
ator [2], which supports multiple video streaming (DASH, HLS,
HTML5) and transport protocols (HTTP/1.1, HTTP/2, HTTP/3).
Each client can be configured to watch video at a specified reso-
lution over a streaming and transport protocol for some length
of time. The server provides a static website with precomputed
audio/video files and fragments supporting each resolution and
format. We extend this traffic generator by instrumenting the client
and server to record Quality of Experience (QoE) metrics and build-
ing experiment orchestration tools to use this generator across an
arbitrary number of clients.

4 EXPERIMENT SCENARIOS
Using the topologies and applications described in the previous
sections, we now develop and run several experiment scenarios. We
create a diverse set of scenarios in order to highlight different vari-
ations of network traffic conditions, and we control the complexity
in each scenario with well-defined application flows. Providing
scenarios that range in complexity enable us to easily label and
others to validate the ground truth in their own experiments.

4.1 Scenario Configurations
There are three general experiments in the DARPA SEARCHLIGHT
dataset, one for each application (cbs, vtc, video). Each experiment:
(1) has configurations for all combinations of configurable param-
eters in each traffic generator, (2) has separate runs with varying
numbers of hosts, and (3) is ran over both network topologies.

Additionally, we control for the following variables:
clients one or more nodes as application clients
servers one or more nodes as application servers
application traffic generator deployed at client(s) and server(s)
application configuration varies per application; see Table 3
packet capture node node where packet capture was collected
encryption if a VPN tunnel was deployed
encryption parameters VPN tunnel configuration
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Table 4: Number of Clients per Experiment Type

App. exp-a exp-b exp-c

cbs 1 3 10
vtc 3 5 8
video 1 3 5

We conduct multiple experiment runs with increasing number of
client hosts in order to emulate reasonably busy network conditions.
Table 4 details the number of clients per application and experiment
type. For example, we initially start with 1 client each in cbs and
video to provide a baseline.We start with 3 clients in vtc specifically
to make use of the centralized signaling server (a conference with
2 clients happens peer-to-peer).

Combining all application configurations and host variations,
there are a total of 132 experiment scenarios in theDARPA SEARCH-
LIGHT dataset: 18 cbs, 108 video, and 6 vtc. Each scenario is run
on both the heavy dumbbell and tiered topologies, with and with-
out encryption using IPSec/WireGuard and their corresponding
STS/PTP configurations (§ 2).

Packet captures are organized into their experiment’s folder and
the filename for any given run contains the host and application set-
tings. For example, a packet capture located in experiment_1/exp-
a-medium-false uses the cbs application with 1 client, medium
typing speed, and typing burstiness disabled. As another example,
experiment_3/exp-b-720-html5-http2 uses video with 3 clients
watching video at 720p resolution, HTML5 streaming, over HTTP/2.

4.2 Scenario Execution
Executing a scenario is a controlled process of three major steps:
configuration, running, and teardown. Like provisioning the ex-
perimental nodes in our testbed (§ 2), we use Ansible playbooks
to orchestrate all aspects of an experiment scenario. Fig. 2 further
breaks down these major steps. We first set up the topology (with
VPNs if enabled), and install and provision the application traffic
generators. Once configuration is complete, we start packet capture
at specified nodes and launch traffic generator server and client ap-
plications on their respective nodes. The scenario is run for roughly
200 s before stopping the traffic generators and packet captures. We
repeat the scenario (starting at packet captures) 3 times in total and
then archive the measurements and tear down the topology.

5 ACCESSING THE DATASET
The DARPA SEARCHLIGHT dataset is ∼750GB with ∼2000 ex-
periment runs. The dataset and documentation summarizing its
contents are available at https://mergetb.org/projects/searchlight/.

Each experimental run includes: (1) a packet capture collected
on a core router node (c0 or c1) that sees all traffic, as well a as
pre-tunneled capture collected on a traffic generating end-host for
the VPN configurations; (2) a summary text file describing all of
the UDP, TCP, and IP (non-UDP/TCP) flows in the packet capture,
including the number of packets and number of bytes per flow; (3)
a CSV showing the packets per second (pps) per flow and bytes
per second (bps) per flow over time; and (4) graphs showing the
pps and bps per flow type over time. Each experiment also has a
webpage with links to the data and summaries.

6 USE CASES AND CONTEXT
We initially collected the DARPA SEARCHLIGHT dataset for an
evaluation effort of the same name [7, 20], and we believe that
other researchers and students can use this dataset to directly com-
pare and test their own technologies in traffic engineering, traffic
analysis, and network measurement.

We used the dataset to evaluate the performance of traffic classi-
fication in plaintext and encrypted network flows, network topol-
ogy inference and path discovery, and dynamic quality of service
(QoS) enforcement on enterprise networks (§ 2). Similarly, other
researchers used part the data to build and iterate on the aforemen-
tioned technologies.

Many of the techniques use AI/ML and researchers used the
labeled ground truth data to develop and train their algorithms.
After training on the simple scenarios, researchers were able to
evaluate and further train on scenarios of increasing complexity (we
covered configuration variations in experiment scenarios in § 4.1).

To easily understand an experiment’s overall network behavior,
we build minimal graphs for each flow. Fig. 3 shows visual represen-
tations of network flows of bytes (𝑦-axis) over time (𝑥-axis), binned
by 1 s, in three different experiments. Each sparkline represents an
individual flow (the truncated IP prefix is the same across all flows:
10.0.) and is deliberately minimized to emphasize a flow’s activity
relative to others. Flows from the same source node are of the same
color and line style.

One of the advantages of using generated data is the minimiza-
tion of noise and other background traffic. For example, researchers
training on video streaming traffic are able to see its dynamics
without additional interference. Fig. 3c shows 3 clients filling their
initial video buffer (0–45 s) and the sawtooth pattern after 45 s
represents the periodic buffer fills afterwards. For video stream-
ing, prior work [2] has shown that these generators are roughly
approximate of real-world traffic—we plan on introducing “noise”
and background traffic as future work.

Fig. 3a and Fig. 3b show the diversity in network traffic behavior
for cloud-based document editing (cbs) and video teleconferencing
(vtc), respectively. In cbs, we see a mix of short, bursty flows and
long-lived, continuous low-bitrate flows, and in vtc, we see long-
lived flows over both TCP and UDP.

These different dynamics for each application adds unique chal-
lenges for developing and evaluating AI/ML for networking and
distributed systems.

7 OTHER DATASET EFFORTS
The lack of representative datasets in the networking and cyber-
security community is well recognized [6, 15]. Many networking
datasets are generally focused on specific measurements on the
Internet with little or no ground truth [6].

Ring et al. [24] present a comprehensive overview of many
datasets. Often these datasets have interesting features, but can
either be unlabeled, heavily anonymized, or have a specific focus
that makes them unrepresentative of actual traffic. For example,
some datasets included slightly contrived anomalous behavior in
order to provide enough interesting data.

There are several existing data repositories like CAIDA [18],
Crawdad [27] and measurement platforms, such as RIPE Atlas [5],

https://mergetb.org/projects/searchlight/
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Figure 2: Flowchart for Executing an Experiment Scenario
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Figure 3: Visual Representation of Experiment Flows

Measurement Lab [11], LANDER [17], PREDICT [16]. While these
datasets or platforms focus on specific types of network measure-
ments (traffic flows, traceroute, DNS queries, wireless contact traces)
they do not have the full, raw packet captures or complete visibility
of a network as presented in the DARPA SEARCHLIGHT dataset.

The popular DARPA cybersecurity datasets [21], collected more
than two decades ago, focuses on cyber attacks andwhile still widely
used, are quite outdated. The LANL dataset [19] is derived from
real-world enterprise data and focuses on end-host logs and flows.
Due to heavy anonymization, this dataset has limited usability for
a wide range of research studies [6].

8 FUTUREWORK AND CONCLUSION
In this paper we presented the DARPA SEARCHLIGHT dataset con-
sisting of increasingly prevalent applications across the Internet.
This dataset consists of packet captures and ground truth files from
systematic experimentation in a variety of configurable parameters
for video streaming, video teleconferencing, and cloud-based doc-
ument editing applications. Additionally, the dataset files contain
multiple iterations of an experiment for statistical rigor and vary-
ing topological configurations enabling the exploration of network
complexity and encryption.

Future work will entail a more diverse set of network configu-
rations to reflect the heterogeneous nature of interconnected net-
works and end-user clients. We plan to simulate dynamic network
conditions like asymmetric or metered bandwidths with realistic la-
tency and loss (often found in residential and mobile environments),
deploy a variety of end-user clients and OSes (mobile devices, Mi-
crosoft Windows), and a mix of split-tunneled and full tunneled
encrypted connections.

The DARPA SEARCHLIGHT dataset aims to provide a starting
point for development and evaluation of data science and AI/ML
methods for networked systems and cybersecurity in the climate
of today’s Internet. Our dataset is freely and publicly accessible at
https://mergetb.org/projects/searchlight/.
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